Given two matroids and on a common ground set with base sets and , some integer , and two cost functions , we consider the optimization problem to find a basis and a basis minimizing cost

subject to either a lower bound constraint , an upper bound

constraint , or an equality constraint on

the size of the intersection of the two bases and . The problem with

lower bound constraint turns out to be a generalization of the Recoverable

Robust Matroid problem under interval uncertainty representation for which the question for a strongly polynomial-time algorithm was left as an open question by Hradovich et al.

We show that the two problems with lower and upper bound constraints on the size of the intersection can be reduced to weighted matroid intersection, and thus be solved with a strongly polynomial-time primal-dual algorithm. The question whether the problem with equality constraint can also be solved efficiently turned out to be a lot harder. As our main result, we present a strongly-polynomial, primal-dual algorithm for the problem with equality constraint on the size of the intersection.

Additionally, we discuss generalizations of the problems from matroids to

polymatroids, and from two to three or more matroids.